Page 122 - Vol.33
P. 122

Tech
             Notes
             技術專文

                                                                                                                                     後,把結果呈現於平台,完成廠務                     129, 2012.
             圖13、泵浦C運轉資訊趨勢圖(上)與綜合指標趨勢圖(下)                                                                                                                             [15]  Kemira Company, Big Data applications
                                                                                                                                     系統智慧管理平台。
                                                                                                                                                                         and advances for the water treatment
                                                                                                                                                                         industry. https://www.kemira.com/
                                                                                                                                                                         company/media/newsroom/news/big-
                                                                                                                                                                         data-applications-and-advances-for-
                                                                                                                                                                         the-water-treatment-industry
                                                                                                                                                                      [16]  G. Guo, H. Wang, D. Bell, Y. Bi, K.
                                                                                                                                                                         Greer, “KNN -Based Approach in
                                                                                                                                                                         Classification.” In: Meersman R., Tari
                                                                                                                                     參考文獻                                Z., Schmidt D.C. (eds) “On The Move
                                                                                                                                                                         to Meaningful Internet Systems 2003:
                                                                                                                                     [1]   R. Keith Mobley, Chapter 1: Mainte-
                                                                                                                                        nance management methods,        CoopIS, DOA, and ODBASE. OTM
                                                                                                                                        “An  I n t rod u ct i on  t o P re d ict i v e   2003”. Lecture Notes in Computer
                                                                                                                                        Ma intenanc e”, 2 n d Editio n,   Science, Vol. 2888, pp. 986-996, 2003.
                                                                                                                                        Butterworth-Heinemann published,   [17]  J.R. Quinlan, Introduction of Decision
                                                                                                                                        pp.1-433, 2002.                  Trees, “Machine Learning”, Vol. 1,
                                                                                                                                     [2]   劉于偉、陳獻耘,大數據在水資源管理             Kluwer Academic Published, Boston,
                                                                                                                                                                         1986.
                                                                                                                                        中的應用展望,水資源研究,Vol. 4, No.
                                                                                                                                        5, pp. 470-476, 2015.         [18]  Sepp Hochreiter and Jiirgen Schmid-
                                                                                                                                                                         huber, “Long Short-term Memory”,
                                                                                                                                     [3]   Viktor Mayer-Schonberger and Kenneth   Natural Computation, Vol. 9, No. 8,
                                                                                                                                        Cukier, “Big data: A revolution that will   pp.1735-1780, 1997.
                                                                                                                                        transform how we live, work, and think.”
                                                                                                                                        Mariner Books Published, 2014.
                                                                                                                                     [4]   Nagdev Amruthnath and Tarun Gupta,
                                                                                                                                        “A Research Study on Unsupervised
                                                                                                                                        Machine Learning Algorithms for Early
                                                                                                                                        Fault Detection in Predictive Mainte-
                                                                                                                                        nance.” 5th International Conference on
                              P-2211B Health Index
                                                                                                                                        Industrial Engineering and Applications,
                                                                                                                                        pp. 355-361, 2018.
                                                                                                                                     [5]   M. Lebold and M. Thurston, “Open
                                                                                                                                        standards for Condition-Based Mainte-
                                                                                                                                        nance and Prognostic System”. 5th
                                                                                                                                        Annual Maintenance and Reliability
                                                                                                                                        Conference MARCON, Gatlinburg USA,
                                                                                                                                        2001.
                                                                                                                                     [6]   A. M. Turing, “Computing machinery
                                                                                                                                        and intelligence”. Mind, Vol. 49, No.
                                                                                                                                        236, pp. 433-460, 1950.
                                                                                                                                     [7]   A. Beghi, R. Brignoli, L. Cecchinato, G.
            Index),使用了泵浦既有的SCADA                                                                                                        Menegazzo, M. Rampazzo, F. Simmini,
                                             圖14、建立預知保養模型之流程圖-以逆滲透膜處理效能與保養為例                                                            “Data-driven Fault Detection and Diag-
            的數據所建立的指標,當指標數
                                                                                                                                        nosis for HVAC water chillers”, Control
            值大於6時,顯示泵浦運轉狀態與                                                                                                             Engineering Practice, Vol. 53, pp. 79-
                                                                                                                                        91, 2016.
            條件發生變異,可提醒工程師即早                       訓練(Training)                                                                       [8]   Marko Kolanovic and Rajesh T. Krish-
            確認設備狀態,在未來若可加入更                                                                                                             namachari, “Big Data and AI Strategies-
                                                     訓練數據                                                                               Machine Learning and Alternative
            多泵浦振動量測數值與異常狀況數                        (Y2017 SCADA &  特徵擷取         模型訓練       完成訓練的模型                                      Data Approach to Investing”, Global
                                                   水質分析數據 &      正常,PM前五天      (RNN + LSTM)  (RO PM Prediction)
            據,提升模型準確率與達成預知保                        RO PM Record)                                                                        Quantitative & Derivatives Strategy, pp.
                                                                                                                                        16-29, 2017.
            養的目標更是指日可待。                                                                                                              [9]   陳胤凱與楊維邦,一個以決策樹為基礎
                                                                                                                                        的三階段監督式學習垃圾郵件過濾架
            除此之外,預測模型的成功,同時                          資料標籤                                                                               構,臺灣碩博士論文系統,2009.
            也意味著本研究所整理之建立預知                        正常,PM前五天                                                                          [10]  Gian Antonio Susto, Andrea Schirru,
                                                                                                                                        Simone Pampuri, Sean McLoone,
            保養模型的標準化流程是可靠的,                                                                                                             Alessandro Beghi, “Machine Learning
            而 圖14是本研究建立逆滲透膜處理                                                                                                           for Predictive Maintenance: a Multiple
                                                  預測(Predicting)                                                                        Classifier Approach”, IEEE Transactions
            效能之預知保養模型流程示意圖,                                                                                                             on Industrial Informatics, Vol. 11, No. 3,
            未來期望可將此標準化流程應用於                          新資料                                                                                pp. 812-820, 2015.
                                                  (Y2018 H1 SCADA  特徵擷取         模型預測          資料標籤                                   [11]  Djamel Ghernaout, Mohamed Aichouni,
            更多廠務系統的預知保養,提升系                                      正常,PM前五天       (Prdicting)  (RO預測PM日期)                                 and Abdulaziz Alghamdi, “Apply big
                                                  & 水質分析數據)
            統設備保養的品質與運轉可靠度,                                                                                                             data in water treatment industry: A new
                                                                                                                                        era of advance,” International Journal
            例如:透過冰機運轉參數預測保養                                                                                                             of Advanced and Applied Sciences,
            時程,或以超純水系統的運轉水質                                                                                                             Vol.5, No. 3, pp. 89-97, 2018.
                                                                                                                                     [12]  Water Online, Understanding Big Data
            分析預測樹脂、活性碳、UV燈等                                                                                                             In the Water  Industry, http://www.
            耗材的更換最佳時間。                                                                                                                  wateronline.com/doc/understanding-
                                                                                                                                        big-data-in-the-water-industry-0002
            除運用於預知保養之外,大數據分                  合領料與叫料,進而達成庫存最適                 度,以達節能效果。最後,綜合以                                         [13]   經濟部水利署,氣候變遷挑戰─永續水
                                                                                                                                        資源治理論壇,https://www.wranb.gov.
            析也可應用於庫房管理或系統節能                  化管理;也可利用冰機運轉參數的                 上的應用可將各別的預測模型與公                                            tw/public/Data/842315382171.pdf
            管理,例如:利用原物料使用量大                  大數據分析,去了解季節變換時外                 司內系統平台整合,自動連結資料                                         [14]   蔡有藤、陳宗傑與廖哲賢,機械系統性
                                                                                                                                        能衰退預測與故障診斷之研究,Journal
            數據分析去預測每日消耗量,並結                  氣溫度的變化,進而調節冰水閥開                 輸入於預測模型,經模型計算分析                                            of Technology, Vol. 27, No. 3, pp. 121-



            122                                                                                                                                                                                              FACILITY JOURNAL          DECEMBER  2018  123
   117   118   119   120   121   122   123   124   125   126   127