Page 123 - Vol.33
P. 123

Tech
 Notes
 技術專文

              後,把結果呈現於平台,完成廠務                     129, 2012.
 圖13、泵浦C運轉資訊趨勢圖(上)與綜合指標趨勢圖(下)                 [15]  Kemira Company, Big Data applications
              系統智慧管理平台。
                                                  and advances for the water treatment
                                                  industry. https://www.kemira.com/
                                                  company/media/newsroom/news/big-
                                                  data-applications-and-advances-for-
                                                  the-water-treatment-industry
                                              [16]  G. Guo, H. Wang, D. Bell, Y. Bi, K.
                                                  Greer, “KNN -Based Approach in
                                                  Classification.” In: Meersman R., Tari
              參考文獻                                Z., Schmidt D.C. (eds) “On The Move
                                                  to Meaningful Internet Systems 2003:
              [1]   R. Keith Mobley, Chapter 1: Mainte-
                 nance management methods,        CoopIS, DOA, and ODBASE. OTM
                 “An  I n t rod u ct i on  t o P re d ict i v e   2003”. Lecture Notes in Computer
                 Ma intenanc e”, 2 n d Editio n,   Science, Vol. 2888, pp. 986-996, 2003.
                 Butterworth-Heinemann published,   [17]  J.R. Quinlan, Introduction of Decision
                 pp.1-433, 2002.                  Trees, “Machine Learning”, Vol. 1,
              [2]   劉于偉、陳獻耘,大數據在水資源管理             Kluwer Academic Published, Boston,
                                                  1986.
                 中的應用展望,水資源研究,Vol. 4, No.
                 5, pp. 470-476, 2015.        [18]  Sepp Hochreiter and Jiirgen Schmid-
                                                  huber, “Long Short-term Memory”,
              [3]   Viktor Mayer-Schonberger and Kenneth   Natural Computation, Vol. 9, No. 8,
                 Cukier, “Big data: A revolution that will   pp.1735-1780, 1997.
                 transform how we live, work, and think.”
                 Mariner Books Published, 2014.
              [4]   Nagdev Amruthnath and Tarun Gupta,
                 “A Research Study on Unsupervised
                 Machine Learning Algorithms for Early
                 Fault Detection in Predictive Mainte-
                 nance.” 5th International Conference on
 P-2211B Health Index
                 Industrial Engineering and Applications,
                 pp. 355-361, 2018.
              [5]   M. Lebold and M. Thurston, “Open
                 standards for Condition-Based Mainte-
                 nance and Prognostic System”. 5th
                 Annual Maintenance and Reliability
                 Conference MARCON, Gatlinburg USA,
                 2001.
              [6]   A. M. Turing, “Computing machinery
                 and intelligence”. Mind, Vol. 49, No.
                 236, pp. 433-460, 1950.
              [7]   A. Beghi, R. Brignoli, L. Cecchinato, G.
 Index),使用了泵浦既有的SCADA  Menegazzo, M. Rampazzo, F. Simmini,
 圖14、建立預知保養模型之流程圖-以逆滲透膜處理效能與保養為例  “Data-driven Fault Detection and Diag-
 的數據所建立的指標,當指標數
                 nosis for HVAC water chillers”, Control
 值大於6時,顯示泵浦運轉狀態與  Engineering Practice, Vol. 53, pp. 79-
                 91, 2016.
 條件發生變異,可提醒工程師即早  訓練(Training)  [8]   Marko Kolanovic and Rajesh T. Krish-
 確認設備狀態,在未來若可加入更  namachari, “Big Data and AI Strategies-
 訓練數據            Machine Learning and Alternative
 多泵浦振動量測數值與異常狀況數  (Y2017 SCADA &  特徵擷取  模型訓練  完成訓練的模型  Data Approach to Investing”, Global
 水質分析數據 &   正常,PM前五天   (RNN + LSTM)  (RO PM Prediction)
 據,提升模型準確率與達成預知保  RO PM Record)  Quantitative & Derivatives Strategy, pp.
                 16-29, 2017.
 養的目標更是指日可待。  [9]   陳胤凱與楊維邦,一個以決策樹為基礎
                 的三階段監督式學習垃圾郵件過濾架
 除此之外,預測模型的成功,同時  資料標籤  構,臺灣碩博士論文系統,2009.
 也意味著本研究所整理之建立預知   正常,PM前五天   [10]  Gian Antonio Susto, Andrea Schirru,
                 Simone Pampuri, Sean McLoone,
 保養模型的標準化流程是可靠的,  Alessandro Beghi, “Machine Learning
 而 圖14是本研究建立逆滲透膜處理  for Predictive Maintenance: a Multiple
 預測(Predicting)  Classifier Approach”, IEEE Transactions
 效能之預知保養模型流程示意圖,  on Industrial Informatics, Vol. 11, No. 3,
 未來期望可將此標準化流程應用於  新資料  pp. 812-820, 2015.
 (Y2018 H1 SCADA  特徵擷取  模型預測  資料標籤  [11]  Djamel Ghernaout, Mohamed Aichouni,
 更多廠務系統的預知保養,提升系   正常,PM前五天   (Prdicting)  (RO預測PM日期)  and Abdulaziz Alghamdi, “Apply big
 & 水質分析數據)
 統設備保養的品質與運轉可靠度,  data in water treatment industry: A new
                 era of advance,” International Journal
 例如:透過冰機運轉參數預測保養  of Advanced and Applied Sciences,
 時程,或以超純水系統的運轉水質  Vol.5, No. 3, pp. 89-97, 2018.
              [12]  Water Online, Understanding Big Data
 分析預測樹脂、活性碳、UV燈等  In the Water  Industry, http://www.
 耗材的更換最佳時間。      wateronline.com/doc/understanding-
                 big-data-in-the-water-industry-0002
 除運用於預知保養之外,大數據分  合領料與叫料,進而達成庫存最適  度,以達節能效果。最後,綜合以  [13]   經濟部水利署,氣候變遷挑戰─永續水
                 資源治理論壇,https://www.wranb.gov.
 析也可應用於庫房管理或系統節能  化管理;也可利用冰機運轉參數的  上的應用可將各別的預測模型與公  tw/public/Data/842315382171.pdf
 管理,例如:利用原物料使用量大  大數據分析,去了解季節變換時外  司內系統平台整合,自動連結資料  [14]   蔡有藤、陳宗傑與廖哲賢,機械系統性
                 能衰退預測與故障診斷之研究,Journal
 數據分析去預測每日消耗量,並結  氣溫度的變化,進而調節冰水閥開  輸入於預測模型,經模型計算分析  of Technology, Vol. 27, No. 3, pp. 121-



 122                                                                                 FACILITY JOURNAL          DECEMBER  2018  123
   118   119   120   121   122   123   124   125   126   127   128