Page 102 - Vol.30
P. 102
New
Vision
新象新知
[10] Fan J., Xu X., Niu X., “Decomposition of
結論 CF4 over Al2O3-Based Metal Oxide”, Acta
Physico-Chimica Sinica, 24 (2008) 1271-
1276.
以 DBD模式建立的NTP電漿系統在本研究中證實可以穩定 [11] Gao S.H., Gao L.H., Zhou K.S., “Super-
hydrophobicity and oleophobicity of silicone
持續地放電運轉,而CF 4 氣體的去除率在NTP-alone系統
rubber modified by CF4 radio frequency
中和理論上相互映證,隨著操作電壓的增加去除率也隨之上 plasma”, Applied Surface Science, 257
升,最後再經由觸媒的加入去除率可達到92%;N 2 O氣體的去 (2011) 4945.
[12] Hu H., Huang H., Xu J., Yang Q., Tao G.K.,
除率和操作電壓則沒有顯著的關係,雖然在低的操作電壓即可
“N2O decomposed by discharge plasma
達到超過90%的去除率,但隨著電壓的上升,去除率反而開 with catalysts”, Plasma Science and
Technology, 17(12) (2015), 1043.
始下降,在Plasma catalysis系統中的表現更是明顯,推測是因
[13] Jiang N., Lu N. Vandenbroucke, Shang K., Li
太強的電壓和Hot spot effect效應會再促使N和O反應而生成 J., Wu Y., “Innovative approach for benzene
N 2 O,也代表去除N 2 O的電壓需求相較之下較小,可作為未來 degradation using hybrid surface/packed-
bed discharge plasmas”, Environmental
在實務應用上的參考。最後在不同載氣條件的實驗下,陰電性
Science & Technology, 47 (2013) 9898-9903.
氣體O 2 會讓CF 4 和N 2 O的去除率顯著的下降,但透過Ar的加入 [14] Kim H.H., Ogata A., Futamura S., “Oxygen
又能讓去除率恢復到90%以上,代表plasma catalysis未來若要 partial pressure-dependent behavior of
various catalysts for the total oxidation of
應用在實廠區,儘管許多製程含有O 2 氣體,仍可以透過加入其
VOCs using cycled system of adsorption
他種類氣體的方式而讓去除率有效地提升。 and oxygen plasma,” Applied Catalysis B:
Environmental, 79 (2008) 356-367.
總結來說,NTP結合觸媒的plasma catalysis系統在本研究中可 [15] Lin B.Y., Chang M.B., Chen H.L., Lee H.W.,
分解CF 4 和N 2 O氣體達90%以上,雖然實驗氣體條件和實廠區 Yu S.J., Li S.N., “Removal of C3F8 via
the combination of non-thermal plasma,
的製程條件存在落差,但本研究的實驗器材仍屬於小尺度範 adsorption and catalysis”, Plasma Chemistry
疇,未來還可透過電漿反應器的擴大或是其他改善讓Plasma and Plasma Processing, 31 (2011) 585.
catalysis實驗更接近實務應用,也更有機會發展出低能耗的電 [16] Mahammadunnisa S., Reddy P.M.K., Reddy
E.L., Subrahmanyam C., Catalytic DBD
漿式廢氣處理裝置。 plasma reactor for CO oxidation by in situ
N2O decomposition, Catalysis Today, 211
(2013) 53.
[17] Mizuno A., “Industrial applications of
atmospheric non-thermal plasma in envi-
ronmental remediation”, Plasma Physics
and Controlled Fusion, 49 (2007), 5A
[18] Nakano T, Sugai, “Partial cross sections
參考文獻 for electron impact dissociation of CF4
into neutral radicals”, Japanese Journal of
[1] Abdelkader-Fernández V.K, Morales-Lara F., Melguizo M., García- Applied Physics, 31 (1992) 2919.
Gallarín C., López-Garzón R., Godino-Salido M.L., López-Garzón F.J.,
Domingo-García M., Pérez-Mendoza M.J., “Degree of functionalization [19] Song J., Chung S., Kim M., Seo M., Lee Y.,
and stability of fluorine groups fixed to carbon nanotubes and graphite Lee K., Kim J., “The catalytic decomposition
nanoplates by CF4 microwave plasma”, Applied Surface Science, 357 of CF4 over Ce/Al2O3 modified by a cerium
(2015) 1410. sulfate precursor”, Journal of Molecular
[2] Chang J.H., “Recent development of plasma pollution control technology: Catalysis A: Chemical, 370 (2013) 50-55.
A critical review”, Science and Technology of Advanced Materials, 2 (2001) [20] Takaki K., Urashima K., Chang J.S, “Ferro-
571. electric pellet shape effect on C2F6 removal
[3] Chang M.B., Chang, J.S., “Abatement of PFCs from semiconductor by a packed-bed-type nonthermal plasma
manufacturing processes by nonthermal plasma technologies: A critical reactor”, IEEE Transactions on Plasma
review”, Industrial & Engineering Chemistry Research, 45 (2006) 4101. Science, 32 (2004) 2175.
[4] Chang M.B., Lee H.M., “Abatement of perfluorocarbons with combined [21] Trushkin A.N., Kochetov I.V., “Simulation of
plasma catalysis in atmospheric-pressure environment”, Catalysis Today, toluene decomposition in a pulseperiodic
89 (2004) 109. discharge operating in a mixture of
[5] Chang M.B., Yu S.J., “An atmospheric-pressure plasma process for C2F6 molecular nitrogen and oxygen”, Plasma
removal”, Environmental Science & Technology, 35 (2001) 1587. Physics Reports, 38 (2012) 407-431.
[6] Chen H.L., Lee H.M., Chen S.H., Chang M.B., Yu S.J., Li S.N., [22] Vandenbroucke A.M., Morent R., De Geyter
"Removal of volatile organic compounds by single-stage and two-stage N., Leys C., “Non-thermal plasmas for non-
plasma catalysis systems: A review of the performance enhancement catalytic and catalytic VOC abatement”,
mechanisms, current Status, and suitable applications”, Environmental Journal of Hazardous Materials, 195 (2011)
Science & Technology, 43 (2009) 2216-2277.
30-54.
[7] El-Bahy Z.M., Ohnishi R., Ichikawa M., “Hydrolysis of CF4 over alumina- [23] Wofford B.A., Jackson M.W., “Surface
based binary metal oxide catalysts”, Applied Catalysis B: Environmental,
40 (2003) 81-91. wave plasma abatement of CHF3 and
CF4 containing semiconductor process
[8] Futamura S., Einaga H., Zhang A., “Comparison of Reactor Performance emissions”, Environmental Science &
in the nonthermal plasma chemical processing of hazardous air Technology, 33 (1999) 1892.
pollutants”, IEEE Transactions on Industry Applications, 37 (2001) 1105.
[24] Yu S.J., Chang M.B., “Oxidative conver-sion
[9] Futamura S., Gurusamy A., “Synergy of nonthermal plasma and
catalysts in the decomposition of fluorinated hydrocarbons”, Journal of of PFC via plasma processing with dielectric
Electrostatics, 63 (2005) 949. barrier discharges”, Plasma Chemistry
Plasma Processing, 21 (2001) 311.
102