Page 21 - Vol.06
P. 21
Plant B
55.4
26.9 27.3
W 6
0.3
3.7
R 34.0
C 30.3 7 R
W
3.1
53.3 29.4 2.7
8
51.7 28.3 0.3 25.0 22.0 2.9 35.0
1.7 9 11
2.9
59.2 5.0 199.9 R 25.1 1.1
70.0 40.0
W 10 C 12
RCW 67.9 W 13.8
39.9 104.2 67.1 5.1 1.2
37.1
Plant A 3.7 45.0 15 13 8.0
45.0 1.4
50.0
1
30.3 12.9 49.9 49.9
34.0 14
2
106.8 R
8.0 8.0 1.7 Plant C 5.0 R
W 4 C
W
45.1 9.7 7.9 7.9
5 R
3
54.8
Figure 5. Resultant network configuration for case 5
the synthesis of integrated water systems in chemical processes. [13] Wang, B., Feng, X., Zhang Z.X.
Comput. Chem. Eng., 30, 650. (2003). A Design Methodology
[8] Kuo, W.C.J., Smith, R. (1998). Designing for the Interactions for Multiple-Contaminant Water
between Water-Use and Effluent Treatment. Trans. Inst. Chem. Networks with Single Internal
Eng., Part A 76, 287. Water Main. Comput. Chem. Eng.,
[9] Liao, Z.W., Wu, J.T., Jiang, B.B., Wang J.D., Yang, Y.R. (2007). 27, 903.
Design Methodology for Flexible Multiple Plant Water Networks. [14] Wang, Y.P., Smith, R. (1994a).
Ind. Eng. Chem. Res., 46, 4954. Wastewater Minimization. Chem.
[10] Liu, Y.Z., Duan, H.T., Feng, X. (2008). The Design of Water- Eng. Sci., 49, 981.
Reusing Network with a Hybrid Structure through Mathematical [15] Wang, Y.P., Smith, R. (1994b). Design
Programming. Chin. J. Chem. Eng., 16, 1. of distributed effluent treatment
[11] Ma, H., Feng, X., Cao, K. (2007). A Rule-Based Design Methodology systems. Chem. Eng. Sci., 49, 3127.
for Water Networks with Internal Water Mains. Trans. Inst. [16] Zheng, X.S., Feng, X., Shen, R.J.,
Chem. Eng., Part A 85, 431. Seider, W.D. (2006). Design of
[12] Olesen, S.G., Polley, G.T. (1996). Dealing with Plant Geography and Optimal Water-Using Networks
Piping Constraints in Water Network Design. Trans. Inst. Chem. with Internal Water Mains. Ind.
Eng., Part B 74, 273. Eng. Chem. Res., 45, 8413.
NEW FAB TECHNOLOGY JOURNAL APRIL 2012 21