Page 18 - Vol.10
P. 18

Tech
             Notes
             技術專文


             Figure 8. Ormsby Low-pass filter and Kaiser window (with alpha=10)


                10             Ormsby
               amplitude  5 0


                 -5
                   0       0.2     0.4      0.6     0.8      1       1.2      1.4      1.6     1.8      2
                                                            second

                10              Kaiser
               amplitude  5 0



                 -5
                   0       0.2     0.4      0.6     0.8      1       1.2      1.4      1.6     1.8      2
                                                            second

                10           Ormsby + Kaiser
               amplitude  5 0


                 -5
                   0       0.2     0.4      0.6     0.8      1       1.2      1.4      1.6     1.8      2
                                                            second






             Figure 9. Convolution description



                0.4
                                                      Start Point of Convolution
                0.2

               g  0
                -0.2

                -0.4
                   0      0.2      0.4      0.6     0.8      1       1.2      1.4     1.6      1.8      2
                                                           second
                0.4
                                                    After Time Domain Convolution
                0.2
               g  0
                -0.2

                -0.4
                   0            10             20            30            40            50             60
                                                            second






            –  Corrected acceleration a1(t)=a(t)-  –  Integrate a 3 (t), assume v(0)=0 (zero   –  Low-pass Ormsby filter for v 1 (t) to
              a 0 -c 0 (t)                     initial velocity), get v 0 (t)  get v 2 (t)
            –  Low-pass Ormsby filter for a 1 (t) to   –  Least square straight line fit for   –  Final corrected velocity v 3 (t)=v 1 (t)-
              get a 2 (t)                      v 0 (t): v 0 +e 0 (t)           v 2 (t)
            –  Final corrected acceleration   –  Corrected velocity v 1 (t)=v 0 (t)-v 0 -  –  Integrate v 3 (t), assume d(0)=0 (zero
              a 3 (t)=a 1 (t)-a 2 (t)          e 0 (t)                         initial displacement), get d 0 (t)




            18
   13   14   15   16   17   18   19   20   21   22   23